瀚博科技图像识别的常用算法和框架,让你快速入门
发布时间:2024-06-16 13:13

text
瀚博科技是一家专注于图像识别的公司,它使用Python和TensorFlow来实现一些常用的图像识别算法。在这篇文章中,我们将介绍瀚博科技如何用Python实现图像识别的常用算法,包括:

  • 使用PyTesseract库来识别图片中的文字。
  • 使用Keras库和MNIST数据集来构建一个简单的手写数字识别系统。
  • 使用局部敏感哈希(LSH)特征和最近邻搜索(NNS)方法来实现电影截图的检索。

使用PyTesseract库来识别图片中的文字

PyTesseract是Python的一个第三方库,可以识别图片中文字。要使用PyTesseract库,我们需要先安装tesseract-ocr软件,并在Python中导入pytesseract模块。然后,我们可以使用image_to_string函数来将图片转化为字符串。例如,我们可以使用以下代码来识别一张图片中的文字:

python
import pytesseract
text = pytesseract.image_to_string(“image.png”)
print(text)
“`

## 使用Keras库和MNIST数据集来构建一个简单的手写数字识别系统

Keras是一个高级的神经网络框架,可以方便地构建和训练深度学习模型。MNIST是一个包含手写数字的数据集,用于训练和测试图像识别系统。要使用Keras库和MNIST数据集来构建一个简单的手写数字识别系统,我们需要先导入所需的模块,并将数据集分为训练集和测试集。然后,我们需要对数据进行预处理,包括归一化和分类编码。接下来,我们可以使用Sequential类来创建一个顺序模型,并添加两个全连接层。最后,我们可以使用compile函数来配置模型的优化器、损失函数和评估指标,并使用fit函数来训练模型。例如,我们可以使用以下代码来构建和训练一个简单的手写数字识别系统:

“`python
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.utils import to_categorical

# Load data and split into train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Preprocess data
x_train = x_train / 255.0 # Normalize
x_test = x_test / 255.0 # Normalize
y_train = to_categorical(y_train, num_classes=10) # One-hot encode
y_test = to_categorical(y_test, num_classes=10) # One-hot encode

# Create a sequential model
model = Sequential()

# Add layers to the model
model.add(Flatten(input_shape=(28, 28))) # Flatten the input image
model.add(Dense(128, activation=”relu”)) # Add a hidden layer with 128 units and ReLU activation
model.add(Dense(10, activation=”softmax”)) # Add an output layer with 10 units and softmax activation

# Compile the model
model.compile(optimizer=”adam”, loss=”categorical_crossentropy”, metrics=[“accuracy”])

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_test, y_test))
“`

## 使用局部敏感哈希(LSH)特征和最近邻搜索(NNS)方法来实现电影截图的检索

局部敏感哈希(LSH)是一种将高维数据映射到低维空间的方法,可以保持相似数据之间的距离较小,不相似数据之间的距离较大。最近邻搜索(NNS)是一种在给定数据集中找到与查询数据最相似的数据的方法。要使用LSH特征和NNS方法来实现电影截图的检索,我们需要先提取电影截图的LSH特征,并将其存储在一个哈希表中。然后,我们需要对查询图片也提取LSH特征,并在哈希表中进行NNS搜索,找到最相似的电影截图。例如,我们可以使用以下代码来实现电影截图的检索:

“`python
import numpy as np
from PIL import Image
from lshash import LSHash

# Define a function to extract LSH features from an image
def get_lsh_features(image):
# Convert the image to grayscale and resize it to 64×64 pixels
image = image.convert(“L”).resize((64, 64))
# Convert the image to a numpy array and flatten it to a vector
image = np.array(image).flatten()
# Compute the mean and standard deviation of the vector
mean = np.mean(image)
std = np.std(image)
# Normalize the vector by subtracting the mean and dividing by the standard deviation
image = (image – mean) / std
# Return the sign of the vector as the LSH features
return np.sign(image)

# Define a function to load an image from a file path and return its LSH features
def load_image(path):
# Open the image file using PIL Image module
image = Image.open(path)
# Extract and return its LSH features using the previous function
return get_lsh_features(image)

# Define a function to perform NNS search on a hash table given a query LSH features vector
def nns_search(hash_table, query):
# Query the hash table using the query vector and get the matching buckets
buckets = hash_table.query(query)
# Initialize a variable to store the best match and its distance
best_match = None
best_distance = float(“inf”)
# Loop through each bucket in the buckets list
for bucket in buckets:
# Loop through each item in the bucket
for item in bucket:
# Get the LSH features and the file path of the item
features, path = item[0], item[1]
# Compute the Euclidean distance between the query vector and the item vector
distance = np.linalg.norm(query – features)
# If the distance is smaller than the best distance, update the best match and its distance
if distance < best_distance:
best_match = path
best_distance = distance
# Return the best match and its distance
return best_match, best_distance

# Create an LSHash object with 4096 bits hash size and 64 dimensions input size
lsh = LSHash(4096, 64)

# Load all the movie screenshots from a folder and store their LSH features in the hash table
for path in glob.glob(“screenshots/*.jpg”):
features = load_image(path)
lsh.index(features, path)

# Load a query image from another folder and extract its LSH features
query_features = load_image(“queries/query.jpg”)

# Perform NNS search on the hash table using the query features
best_match, best_distance = nns_search(lsh, query_features)

# Print the best match file path and its distance
print(best_match, best_distance)

# Show the query image and the best match image using PIL Image module
query_image = Image.open(“queries/query.jpg”)
best_match_image = Image.open(best_match)
query_image.show()
best_match_image.show()
“`
“`

服务热线
在线咨询